2025-05-12 13:42:44 +01:00

63 lines
1.9 KiB
TypeScript

import { NextResponse } from "next/server";
import { PrismaClient } from "@prisma/client";
import fs from "fs/promises";
import path from "path";
import { parse } from "csv-parse/sync";
// Define the path to your CSV file.
// Place your earthquakes.csv in your project root or `public` directory
const csvFilePath = path.resolve(process.cwd(), "public/earthquakes.csv");
const prisma = new PrismaClient();
type CsvRow = {
Date: string;
Magnitude: string;
Latitude: string;
Longitude: string;
Location: string;
Depth: string;
};
export async function POST() {
try {
// 1. Read the CSV file
const fileContent = await fs.readFile(csvFilePath, "utf8");
// 2. Parse the CSV
const records: CsvRow[] = parse(fileContent, {
columns: true,
skip_empty_lines: true
});
// 3. Transform each CSV row to Earthquake model
// Since your prisma model expects: name, date (DateTime), location, magnitude (float), depth (float). We'll fill casualties/creatorId as zero/null for now.
const earthquakes = records.map(row => {
// You may want to add better parsing & validation depending on your actual data
return {
date: new Date(row.Date),
location: row.Location,
magnitude: parseFloat(row.Magnitude),
latitude: row.Latitude,
longitude: row.Longitude,
depth: parseFloat(row.Depth.replace(" km", "")),
// todo add creatorId
creatorId: null
};
});
// 4. Bulk create earthquakes in database:
// Consider chunking if your CSV is large!
await prisma.earthquake.createMany({
data: earthquakes,
skipDuplicates: true, // in case the route is called twice
});
return NextResponse.json({ success: true, count: earthquakes.length });
} catch (error: any) {
console.error(error);
return NextResponse.json({ success: false, error: error.message }, { status: 500 });
} finally {
await prisma.$disconnect();
}
}